skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pereira, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report results from a systematic wide-area search for faint dwarf galaxies at heliocentric distances from 0.3 to 2 Mpc using the full 6 yr of data from the Dark Energy Survey (DES). Unlike previous searches over the DES data, this search specifically targeted a field population of faint galaxies located beyond the Milky Way virial radius. We derive our detection efficiency for faint, resolved dwarf galaxies in the Local Volume with a set of synthetic galaxies and expect our search to be complete to M V ∼ (‑7, ‑10) mag for galaxies at D = (0.3, 2.0) Mpc. We find no new field dwarfs in the DES footprint, but we report the discovery of one high-significance candidate dwarf galaxy at a distance of $${2.2}_{-0.12}^{+0.05}\,\mathrm{Mpc}$$ , a potential satellite of the Local Volume galaxy NGC 55, separated by 47' (physical separation as small as 30 kpc). We estimate this dwarf galaxy to have an absolute V-band magnitude of $$-{8.0}_{-0.3}^{+0.5}\,\mathrm{mag}$$ and an azimuthally averaged physical half-light radius of $${2.2}_{-0.4}^{+0.5}\,\mathrm{kpc}$$ , making this one of the lowest surface brightness galaxies ever found with $$\mu =32.3\,\mathrm{mag}\,{\mathrm{arcsec}}^{-2}$$. This is the largest, most diffuse galaxy known at this luminosity, suggesting possible tidal interactions with its host. 
    more » « less
  2. Digital three-dimensional (3-D) information concerning the location and condition of subsurface urban infrastructure is emerging as a potential new paradigm for aiding in the assessment, construction, emergency response, management, and planning of these vital assets. Subsurface infrastructure encompasses utilities (water, stormwater, wastewater, gas, electricity, telecommunications, steam, etc.), geotechnical formations, and the built underground (including tunnels, subways, garages and subsurface buildings). Traditional approaches for collecting location information include merging as-built drawings, historical records, and dead reckoning; and combining with information gathered by above-ground geophysical instruments, such as ground penetrating radars, magnetometers and acoustic sensors. This paper presents results of efforts aimed at using photogrammetric and augmented reality (AR) techniques to aid collecting, processing, and presenting 3-D location information. 
    more » « less
  3. Abstract Redshift measurements, primarily obtained from host galaxies, are essential for inferring cosmological parameters from type Ia supernovae (SNe Ia). Matching SNe to host galaxies using images is nontrivial, resulting in a subset of SNe with mismatched hosts and thus incorrect redshifts. We evaluate the host galaxy mismatch rate and resulting biases on cosmological parameters from simulations modeled after the Dark Energy Survey 5 Yr (DES-SN5YR) photometric sample. For both DES-SN5YR data and simulations, we employ the directional light radius method for host galaxy matching. In our SN Ia simulations, we find that 1.7% of SNe are matched to the wrong host galaxy, with redshift differences between the true and matched hosts of up to 0.6. Using our analysis pipeline, we determine the shift in the dark energy equation of state parameter (Δw) due to including SNe with incorrect host galaxy matches. For SN Ia–only simulations, we find Δw= 0.0013 ± 0.0026 with constraints from the cosmic microwave background. Including core-collapse SNe and peculiar SNe Ia in the simulation, we find that Δwranges from 0.0009 to 0.0032, depending on the photometric classifier used. This bias is an order of magnitude smaller than the expected total uncertainty onwfrom the DES-SN5YR sample of ∼0.03. We conclude that the bias onwfrom host galaxy mismatch is much smaller than the uncertainties expected from the DES-SN5YR sample, but we encourage further studies to reduce this bias through better host-matching algorithms or selection cuts. 
    more » « less
  4. ABSTRACT Cross-correlation between weak lensing of the Cosmic Microwave Background (CMB) and weak lensing of galaxies offers a way to place robust constraints on cosmological and astrophysical parameters with reduced sensitivity to certain systematic effects affecting individual surveys. We measure the angular cross-power spectrum between the Atacama Cosmology Telescope (ACT) DR4 CMB lensing and the galaxy weak lensing measured by the Dark Energy Survey (DES) Y3 data. Our baseline analysis uses the CMB convergence map derived from ACT-DR4 and Planck data, where most of the contamination due to the thermal Sunyaev Zel’dovich effect is removed, thus avoiding important systematics in the cross-correlation. In our modelling, we consider the nuisance parameters of the photometric uncertainty, multiplicative shear bias and intrinsic alignment of galaxies. The resulting cross-power spectrum has a signal-to-noise ratio = 7.1 and passes a set of null tests. We use it to infer the amplitude of the fluctuations in the matter distribution (S8 ≡ σ8(Ωm/0.3)0.5 = 0.782 ± 0.059) with informative but well-motivated priors on the nuisance parameters. We also investigate the validity of these priors by significantly relaxing them and checking the consistency of the resulting posteriors, finding them consistent, albeit only with relatively weak constraints. This cross-correlation measurement will improve significantly with the new ACT-DR6 lensing map and form a key component of the joint 6×2pt analysis between DES and ACT. 
    more » « less